。根据膨胀剂与水泥、水拌和后经水化反应生成的产物来划分,通常将膨胀剂分为3类:硫铝酸钙类混凝土膨胀剂、硫铝酸钙-氧化钙类混凝土膨胀剂和氧化钙类混凝土膨胀剂,其发展历程经历了高碱高掺、中碱中掺和低碱低掺的3个阶段。现行混凝土膨胀剂的3项主要合格指标是碱含量、水中限制膨胀率和空气中限制干缩率。
3.2 膨胀剂的选择
膨胀剂的主要功能是补偿混凝土硬化过程中的干缩和冷缩。JC4762001《混凝土膨胀剂》规定,当选用膨胀剂时,主要有3项指标:一是碱含量≤0.75%;二是水中7d限制膨胀率≥0.025%;三是掺量≤12%。选择膨胀剂时,应考虑膨胀剂与水泥和其他外加剂的相容性。掺入膨胀剂一般并不影响水泥混凝土的和易性与凝结硬化速率,但由于水泥水化速率对混凝土强度和膨胀值的影响较大,若与缓凝剂共同使用时,将致使混凝土的膨胀值过大,如果不适当地进行限制,还会导致混凝土强度的降低。因此,膨胀剂与其他外加剂复合使用前应进行试验验证。
3.3 混凝土膨胀剂的膨胀源
3.3.1 钙矾石
我国生产的混凝土膨胀剂绝大多数是硫铝酸盐膨胀剂,其膨胀源是其水化产物钙矾石。除石膏的质量之外,其活性高低主要取决于膨胀剂熟料的质量。提高水化产物钙矾石的稳定性,增强其抗碳化能力,抑制碱-集料反应,是保证混凝土膨胀剂质量的关键。
形成钙矾石的化学反应式如下:
6CaO+Al2O3+3SO3+32H2O→3CaOAl2O33CaSO432H2O(1)
由反应式(1)可知,在Al2O3和Ca(OH)2足量的条件下,钙矾石形成的数量取决于水泥基材料膨胀体系中SO3的数量。若石膏的溶解速度快,则钙矾石形成的速度也快,从而使得有效膨胀能降低。我国生产的混凝土膨胀剂大多以含杂质少、溶解速度较慢的硬石膏作为膨胀组分,一般硬石膏中SO3含量≥48%。
3.3.2 高钙粉煤灰和工业废石膏
利用高钙粉煤灰和工业废石膏等固体废弃物中的膨胀组分(自由氧化钙或含不同结晶水的硫酸钙晶体)开发新的混凝土膨胀剂,也是发展混凝土膨胀剂的一个重要途径。
高钙粉煤灰的膨胀组分主要是游离氧化钙,游离氧化钙水化将会引起膨胀;工业废石膏的膨胀组分主要是含不同结晶水的硫酸钙晶体,它在水化过程中参与钙矾石的形成而引起膨胀。
4 使用混凝土膨胀剂应注意的问题
4.1 限制膨胀率问题
混凝土的限制膨胀率ε2在工程应用中非常重要。它随着混凝土强度的提高而增大,但二者并不成正比例关系。ε2数值大,自应力值高,其补偿收缩、防裂抗渗的能力强;ε2数值小,其防裂抗渗的能力弱。因此,限制膨胀率ε2是建筑结构防裂抗渗的重要参数。
不同结构、不同部位混凝土的抗裂要求也不同。大量工程实践表明,防水工程的底板混凝土灌浆料的限制膨胀率ε2=0.02%~0.025%,侧墙的限制膨胀率ε2=0.03%~0.035%,后浇带或膨胀加强带的限制膨胀率ε2=0.035%~0.045%为宜。
4.2 膨胀剂的掺量问题
由于膨胀剂本身具有活性,可视为水泥的一部分,因而其掺量的计算方法是按等量替代胶凝材料的内掺法。在实际工程中,应根据不同的结构部位,科学合理地掺入不同数量的膨胀剂,才能达到补偿收缩的要求。对于后浇带或膨胀加强带,需用大膨胀混凝土填充,要求混凝土膨胀率达到0.035%~0.045%,强度提高5MPa,需掺14%~15%的膨胀剂才能达到,如掺12%的膨胀剂将不能满足设计要求,有可能造成混凝土结构开裂。但是,如果膨胀剂掺量过多,不仅会增加成本,还会给施工带来不便,这也是目前膨胀剂存在的问题。
由于膨胀剂和混凝土中的部分添加剂存在适应性问题,所以膨胀剂厂家提供的掺量只能作为参考,实际掺量应根据所设计的限制膨胀率,采用现场的原材料,通过混凝土试配试验来确定。
4.3 加强搅拌,提高膨胀剂的均匀性
膨胀剂的均匀性是保证补偿收缩混凝土防裂、抗裂的基本条件,提高膨胀剂均匀性的主要措施有:①严格按搅拌制度拌和混凝土,拌和时间应比普通混凝土延长30s,以保证膨胀剂与水泥、减水剂拌和均匀,提高其匀质性;②混凝土的运输、布料应严格按照施工规范进行,防止离析。
4.4 加强养护
膨胀剂只有与水泥均匀混合,通过充分水化才能实现要求达到的膨胀率。膨胀剂在水泥水化过程中需要较多的水分,实践表明,仅靠拌和水是远远不能满足水化要求的,因而加强补偿收缩混凝土浇注后的供水养护十分重要,补偿收缩混凝土的保湿养护期应不小于14d。对于大体积混凝土,其表面必须进行蓄水养护。另外,也可采用洒水和用塑料薄膜覆盖的方法进行养护。
4.5 遵循膨胀剂的选用原则
首先应正确地选用膨胀剂;使用混凝土膨胀剂时,必须保证一定的温度和湿度,钙矾石的性能才能保持稳定;使用膨胀剂必须严格遵循国家标准,因地制宜地进行选用。