本文认为,数字化施工的内涵应包括空间信息与可视化,系统仿真计算,虚拟现实和多智能体施工4个部分。
2.1空间信息与可视化
空间信息是数字化施工管理的首要前提,它包括施工场地的地形、地貌、建筑物、施工项目等一切空间的信息。空间信息技术是处理空间信息最为有力的工具,它主要包括遥感技术(RS)、地理信息系统(GIS)和全球定位系统(GPS),即3S.其中,地理信息系统在建设工程施工中具有重要作用。
地理信息系统[2](GIS,GeographicInformationSystem)是近年来迅速发展起来的、一门介于地球科学与信息科学之间的交叉学科,亦是地学空间数据与计算机技术相结合的新型空间信息技术。它是以采集、存储、管理、分析、描述和应用整个或部分地球表面(包括大气层在内)与空间和地理分布有关的数据的计算机系统。目前,国际上具有代表性GIS软件有:ESRI公司的ARCINFO,它是目前世界上功能最强最齐全的多平台GIS软件,具有空间拓扑和网络拓扑,可进行各种空间叠加分析和网络路径分析;INTEGRAPH公司的GeoMediaWebMap,它的地理数据具有空间拓扑结构,属性数据和空间数据采用DBMS管理,由于没有统计专题图的功能,目前还没有被广大用户广泛接受;MapInfo公司的MapXstreme系统,它的地理数据没有空间拓扑关系,采用文件方式管理,具有统计专题图功能,是成熟的地理信息系统,也是目前流行的GIS工具平台,属性数据采用DBMS管理;AutoDesk公司的AutoDeskMapGuide系统,它的地理数据采用文件管理,具有空间拓扑关系,但没有空间分析和网络路径分析功能,属性数据采用DBMS管理。
GIS技术在我国起步较晚,但发展仍然很快,在应用研究方面尤其是通用软件开发方面相对落后。目前较有影响的软件有:北大遥感所的Citystar、武汉测绘科技大学的GeoStar、中国地质大学的MapGIS等。GIS具有存储、处理、传输和显示海量地理信息或空间数据的功能,可以对信息进行空间分析和可视化表达,丰富的查询功能也是GIS的一大显著特点,因而适合用于规模越来越庞大的工程建设系统的管理[3].近年来随三维、四维的数据模型日趋成熟,三维、四维的GIS也逐渐得到研究和应用。天津大学等将GIS技术与系统仿真技术相结合,并广泛应用于水利水电工程的施工领域中,如坝区地质三维可视化、地下洞室和大坝施工过程三维动态演示、施工导截流施工管理、施工场地总布置等,在行业内取得不小的反响[4].另外,与人工智能、面向对象、万维网、虚拟现实等技术的结合的新型地理信息系统不断的出现,这与施工管理数字化的趋势相符合,因此,也必将在工程建设领域得到更加深入和广泛的应用。
2.2系统仿真计算
系统仿真技术是20世纪40年代末随着计算机技术的发展逐步形成的一门新兴学科,它以相似性原理、系统工程方法、信息技术及应用领域相关专业技术为基础,以计算机等设备为工具,利用系统模型对真实的、或设想的系统进行动态研究的一门多学科的综合技术[5].仿真就是通过建立系统模型对实际系统进行试验研究的过程。随着仿真技术的发展,现代仿真技术已经成为任何复杂系统不可缺少的分析、研究、设计、评价、决策和训练的重要手段。
国外从70年代开始将仿真技术应用到工程施工过程仿真,以循环网络仿真软件为代表的一系列软件已广泛地应用在隧洞施工、土石方开挖、桥梁施工、管道施工等工程施工领域,如Halpin用于工程施工过程仿真的CYCLONE,Moavenzadeh用于费用预测的隧道施工仿真软件TCM,Clemmins用于土方工程施工仿真的SCRAPESIM,Kavanagh用于代替CPM的循环网络仿真系统SIREN,Odeh基于知识的施工计划仿真系统CIPROS,以及Huang用于施工过程动态交互仿真的DISCO等[6].20世纪90年代以来,系统仿真的研究主要集中在:分布式交互仿真(DistributedInteractiveSimulation)、面向对象仿真(Object-OrientedSimulation)、智能仿真(IntelligentSimulation)、可视化仿真(VisualSimulation)、多媒体仿真(MultimediaSimulation)和虚拟现实(VirtualReality)等[7].
可视化与仿真相结合生成可视化施工管理过程,80年代初天津大学首先把仿真技术引入水电工程施工领域,随后对大型地下洞室群、混凝土坝的施工过程进行仿真研究,尤其是近期大量富有开拓性的研究成果,在众多大型实际工程中得到了成功地应用。目前,其他高等院校及科研单位也在隧道施工、水利水电施工、港口工艺方案设计和土方运输等方面,进行了仿真研究。
2.3虚拟现实
所谓虚拟现实(VirtualReality,简称VR),就是采用以计算机技术为核心的现代高新科技生成逼真的集视觉、听觉、触觉与嗅觉为一体的特定范围的模拟环境,通过多种传感设备(如头盔显示器、立体眼镜、数据手套、数据衣等)使用户以自然的方式与模拟环境中的物体进行交互,从而产生身临其境的感受和体验。虚拟现实有重要的3I特性:
(1)Immersion(沉浸度)。VR系统不再像传统的计算机接口技术一样,用户与计算机的交互方式已经是自然的,就像现实中人与自然的交互一样。
(2)Interaction(交互性)。VR系统区别于传统三维动画的特征是用户不再被动地接受计算机所给予的信息,或者是旁观者,而是能够使用交互输入设备来操纵虚拟物体,以改变虚拟世界的。
(3)Imagination(想象性)。用户利用VR系统可以从定性和定量综合集成的环境中获得感性和理性的认识,从而深化概念和萌发新意。
虚拟现实从提出到现在经历了一个发展的过程,其建模的工具也越趋于多样化:一是Rend386是一个免费的程序库和世界播放器,功能较弱,适于DOS环境。二是Worldtoolkitforwindows是以Windows动态链接库的形式发布的虚拟现实程序库。在标准SVGA下运行,可以在窗口中显示带纹理映射的虚拟世界,也可全屏显示。三是虚拟现实建模语言VRML(VirtualRealityModelingLanguage)是一种网络上使用的描述三维环境的场景描述语言,目前已有多种版本。VRML虚拟空间生成系统可以使用户通过可视化拖放的方法,人机交互生成VRML虚拟空间,而用户完全不需要掌握VRML的语法和规范。四是OpenGL(开放式图形语言)是一种建立图形库的语言,该语言功能强大,是实现虚拟现实的较好工具,但由于其编程量大,且较难掌握。五是CAD、3DSMax、VisualC++、GIS、Matlabsimulink工具箱等。
虚拟现实系统首先在军事、航天等高科技领域及娱乐和漫游等方面获得成功的应用,现在工程建设领域也得到应用,如利用VR的可视化特性,检验施工组织设计方案的可行性,或者通过实时交互修改参数来对不同施工方案进行比较;VR的交互性也是学校教学或培训员工的有效工具。
2.4多智能体施工
智能体(Agent)是指为了实现自己的设计目标或任务而独立自主的运行,能适应自身所处的环境,并能不断地从环境中获取知识以提高自身能力,具有学习和推理功能的智能实体。多智能体系统是由多个可计算的智能体组成的集合,其中,每个智能体是一个物理的或抽象的实体,能作用于自身和环境,并与其它智能体通讯。多智能体技术是人工智能技术的一次质的飞跃。
多智能体技术具有自主性、分布性、协调性,并具有自组织能力、学习能力和推理能力。采用多智能体系统解决实际应用问题,具有很强的适应性和可靠性,并具有较高的问题求解效率。由于在同一个多智能体系统中各智能体可以异构,因此,多智能体技术对于复杂系统具有无可比拟的表达力,它为各种实际系统提供了一种统一的模型,从而为各种实际系统的研究提供了一种统一的框架,其应用领域十分广阔,具有潜在的巨大市场。目前多智能体的建模软件各样,如JAVA、VisualC++、VisualBasic、SQLServer、Delphi、PowerBuilder中的CLIPS等。随着国民经济的发展和新技术、新材料、新工艺的不断出现,工程项目规模不断扩大、形式日益复杂,工程建设过程涉及的单位和个人也越来越多,因而对建设工程管理的统筹性、协调性、时效性提出的要求就越来越高。对于这样一个复杂的系统,应用多智能体技术来保证工程建设任务的顺利进行时非常合适的。目前,已有学者将多智能体技术应用到综合整治工程、工程招投标、大型工程的物资供应系统。
参考文献: [1]江绵康。对“数字地球”的几点认识[J].地理信息世界,2003,1(3):1-3.
[2]胡鹏,黄杏元,华一新。地理信息系统教程[M].武昌:武汉大学出版社,2002.
[3]黄恩才,赵彤,于敬海,等。地理信息系统在土木工程中的应用[J].天津理工学院学报,2003,19(3):96-99.
[4]钟登华,郑家祥,刘东海,等。可视化仿真技术及其应用[M].北京:中国水利水电出版社,2002.
[5]康凤举。现代仿真技术与应用[M].北京:国防工业出版社,2001.
[6]李景茹。大型工程施工进度分析理论方法与应用[D].天津:天津大学博士学位论文,2003.
[7]李伯虎,王正中。90年代计算机仿真技术新动向[J].计算机世界,1992(9):4-6.
信息发布:广州名易软件有限公司 http://www.myidp.net